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ABSTRACT 

This paper presents a software system for online image-
based terrain classification that mimics a human 
supervisor’s segmentation and classification of training 
images into “Go” and “NoGo” regions. The system 
identifies a set of image chips (or exemplars) in the 
training images that span the range of terrain 
appearance.  It then uses the exemplars to segment 
novel images and assign a Go/NoGo classification. 
System performance is compared to that obtained via 
offline fuzzy c-means clustering. 
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I.  INTRODUCTION 

Monocular and stereo video cameras continue to be the 
most practical vision sensor for small inexpensive 
robots.  Unfortunately, unstructured vision-based 
navigation remains an especially difficult problem. In this 
paper, we present an approach to automated image 
segmentation and terrain classification using exemplars, 
or small image samples, to represent the variety of 
terrain appearance.  

Exemplars are used as cluster seeds to segment the 
terrain. Local pieces of terrain are assigned to the 
exemplar to which they are most similar in appearance 
and inherit the terrain class membership of the 
exemplar. Exemplar models assume that intact stimuli 
are stored in memory, and that classification or 
recognition is determined by the degree of similarity 
between a stimulus and the stored exemplars. Simple 
generalization effects explain correct classification of 
novel (previously unseen) instances of categories. Only 
the item information is used for classification decisions.  
Categorization relies on the comparison of a new 
stimulus with known exemplars of the category.  

Exemplar models are the most parsimonious models of 
categorization in terms of the underlying associative 
mechanism [1].  Exemplar based learning was originally 
proposed as a model of human learning in Ref. [2], and 
has since been shown to explain both human and animal 
visual classification performance significantly better than 
alternative hypotheses of feature-based and prototype-
based processing [3,4].   

Various researchers have begun to develop methods to 
forecast traversability using estimates of geometrical 
properties inferred from non-contract sensors. 
References [5] and [6] developed a fuzzy-rule-based 
system to mimic human “high/medium/low” trafficability 
assessment based on measures of roughness, slope 
and distance between obstacles computed from stereo 
imagery. The system was targeted for planetary rover 
environments.  Reference [7] used a stereo color vision 
system together with a single axis LADAR to classify 
terrestrial terrain cover and detect obstacles. They noted 
that the color-based classification system could be made 
more robust by considering texture of regions and shape 
features of objects. Reference [8] defined a trafficability 
index equal to the weighted sum of the slope and 
roughness estimated from line-scanning laser 
rangefinder data.   Reference [9] classified terrain as 
impassible (NoGo) if any of several properties were 
above a threshold:  height variation, the surface normal 
orientation, and the presence of an elevation 
discontinuity (all estimated from LADAR imagery).  
Reference [10] developed a rule-based system for 
terrain classification from LADAR and color camera 
imagery. 

Appearance based approaches do not attempt to directly 
estimate geometrical properties and then infer 
traversability.  Instead, they associate the operator’s 
assessment of trafficability directly from the terrain 
appearance.  The operator’s trafficability assessment is 
not restricted to geometrical properties, but can also 
reflect surface properties (e.g., friction, resistance, 
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sinkage) and factors that do not affect traversability but 
which nonetheless exclude certain terrain (e.g., the risk 
of being run over by a car or the need to avoid detection 
by staying in shaded areas). 

Various applications could benefit from automatic 
methods to segment and classify terrain from images, 
such as virtual reality simulated terrain, mobile robot 
navigation, combat engineering planning, and land cover 
analysis for ecological studies. These applications 
address different scales, terrain features and classes of 
interest. It is unlikely that any specific segmentation and 
classification criteria would be suitable for all of these 
applications. Nonetheless, the applications have 
important similarities.  In all cases, we implicitly assume 
that local areas with similar appearance should be 
grouped together in any segmentation, and that they are 
likely to be representatives of the same terrain class. We 
also implicitly assume that we know in advance what 
terrain classes we are interested in and what they 
commonly look like. For the purposes of this research, 
we assume that the segmented terrain regions or 
regions of the same terrain class do not have any a priori 
constraints on their geometric shape or global 
organization. We also assume that there are no a priori 
constraints regarding which terrain classes can be 
adjacent to each other. 

   

Fig. 1: Input training image and classification. 

The approach is currently implemented as a software 
system designed to provide considerable flexibility in the 
choices of perspective transformation, resolution, scale, 
sampling and difference metric. In general, different 
choices will be appropriate for different applications. The 
software automatically builds a characteristic “basis set” 
of exemplars from training images.  It provides an option 
for building a set of exemplars for each terrain class, 
with the union over the terrain classes being the basis 
set exemplars for an application. A second option is to 
build a set of terrain segmentation exemplars 
independent of the terrain classes, and then associate 
the exemplars with terrain classes. In its present form, 
the software does not attempt to resolve ambiguities 
when an area does not resemble any of the a priori 
terrain classes, or areas that have partial membership in 
two or more terrain classes. Instead, it produces a fuzzy 
classification, i.e., a segment of terrain can have partial 
membership in different terrain classes, and may be 
partially unclassified. 

II. TECHNICAL APPROACH 

The algorithm is organized into two routines: one for 
training and one to apply segmentation and 
classification. At the end of training, the exemplar bank 
and associated data are stored in a file to be loaded 
before applying the segmentation and classification.  

A. Training Images and Overlays  

The user must provide a set of representative training 
images. Ideally, the training images would be drawn 
from the same distribution as the downstream 
application images. In practice, it may not be possible to 
ensure this.  The effect on segmentation and 
classification performance of different terrain, foliage, 
season, lighting, and weather between the training 
image set and test/application image set is a question for 
empirical investigation. In principle, the images can be 
multi-spectral with an arbitrary number of planes. 
Currently, the software assumes that the images are 
RGB or monochrome images stored in a standard image 
format.   

For each training image, a corresponding terrain 
classification overlay is required that denotes which 
locations correspond to which terrain class. One 
approach is to use an N plane image, where N is the 
number of terrain classes and each plane is a binary 
image. An alternative approach is to use a single plane 
with integer values from 1 to N (for the N terrain 
classes), and zero for unclassified locations. This 
representation is more appropriate when there are a 
large number of terrain classes, or when the terrain 
classes constitute an ordered set, e.g., ordered by 
traverse ability cost or by speed-made-good. For 
purposes of demonstration, we use two terrain classes 
(e.g., “Go” and “NoGo” regions) and the overlays are 
stored as three-plane RGB images (the third plane is not 
used). The terrain classification is displayed as an RGB 
image in which one terrain class is coded red and the 
other is coded green, with blue used to code unclassified 
regions.  An example of this is shown in Fig. 1, where 
the gravel driveway is designated as a “Go” region and 
everything else is designated a “NoGo” region. 

B. Perspective Transformation, Resolution, Scale and 
Sampling  

In some cases, a transformation from original camera 
perspective may be appropriate. In the camera image 
view, pixels represent the same angle (assuming lens 
distortion effects are minimal), but do not project onto 
equal areas of ground.  This is problematic since terrain 
appearance changes with range and thus, would require 
multiple instances of the same terrain for training (at 
different ranges). 



 

 

Assuming the elevation of the camera is large relative to 
the variation in ground elevation in the scene, the 
pseudo plan view projection can be used to create a new 
image in which each pixel corresponds to the same 
ground area (see Fig. 2).  The pseudo plan view 
projection is good for areas where the variation in 
elevation is small relative to the elevation of the camera, 
but produces distortion when this is not the case.  An 
alternative projection is to restrict analysis to horizontal 
sub-bands within the image. The band view does not 
distort vertical objects, but retains the perspective 
distortion of the original camera image for flat earth 
regions.  A third alternative is to use a stereovision 
camera to measure range and warp the image 
accordingly, such that each image chip roughly 
corresponds to equal areas of ground. 

Both the pseudo plan view and camera view options are 
supported in the current software.  Both transformations 
require the size of the camera image, and the angle 
subtended by an individual pixel (we assume square 
pixels). The pseudo plan view projection requires three 
additional inputs:  (1) the height of the camera above 
ground plane, (2) the distance on the ground from the 
spot below the camera to the ground projection of the 
bottom row of the image, and (3) the desired resolution 
of the projected image, i.e. the pixel width of the output 
projection in centimeters. 

 

   

 

 
 

   
Fig 2: Camera image view and pseudo plan view. 

The camera band view also requires three additional 
inputs:  (1) the image row number of the top row of the 
band, (2) the image row number of the bottom row of the 
band, and (3) the resolution for the band-view image (the 
angle of pixels in the band view image must be less than 
or equal to the pixel angle of the original camera image). 

The user must also specify the analysis scale for terrain 
segmentation and classification.  The segmentation and 
classification is based on exemplar image chips (square 
chips in the current software).  The scale is the width of 
the exemplar chips.  Membership in a terrain class is 
considered to be a bulk property of a local region, not a 
point-location property.  The user must also specify the 

center-to-center spacing, or sampling distance, for the 
output segmentation and classification images.  

C. Image Space Transformation  

The purpose of the image space transformation is to 
amplify the importance of selected image properties. For 
example, the imagery can be transformed into a variety 
of color spaces.  The importance of color could be 
strengthened or weakened by weighting different image 
planes.  In addition to the RGB color coordinate system, 
we have experimented with the HSV (hue, saturation, 
value) and L*a*b* (luminance, red/green, yellow/blue) 
systems. 

Another transformation option is to adjust the high 
spatial frequency content relative to low spatial 
frequency content by constructing a multi-resolution 
pyramid representation and then applying weights to the 
image planes.  A common example is the laplacian-of-
gaussian spatial bandpass pre-filtering often used in 
stereo-vision processing. 

The space transformation could increase the 
dimensionality of the image space.  Consider a 
monocular image input.  The image could be processed 
through a bank of N spatial filters, such as edge and 
corner filters at different spatial scales and orientations.  
Each filter produces a single-plane output image.  

D. The Exemplar Basis Set  

The current software processes the training images one 
at a time. There is an option to find exemplars of each 
image independent of exemplars from other images, or 
to find only new exemplars sufficiently different from 
exemplars built from preceding images. The current 
image is chopped into chips at the specified scale and 
sampling distance. If the option was selected to process 
the image independently from previous images, all chips 
are nominated as potential exemplars. If the exemplar 
processing is in the context of previous exemplars, only 
chips whose minimum distance (in terms of the image 
metric) to existing exemplars is greater than the current 
clustering threshold are nominated as potential 
exemplars:  chips that resemble current exemplars are 
not considered as possible new exemplars.  

Each chip is compared to its neighbors within a specified 
radius to calculate the difference metric between it and 
each of its neighbors (the radius is a user input). The 
aggregate local difference between the chip and its 
neighbors is calculated as the weighted average of the 
mean and minimum differences (The weight is a user 
input. Weighting towards the minimum leads to a larger 
pool of exemplars, and weighting towards the mean 
leads to a smaller pool of exemplars).  Chips similar to 



 

 

their neighbors are preferred over those that are 
different. 

The algorithm calculates a clustering threshold equal to 
the weighted sum of the minimum and maximum local 
differences over all chips (The weight is a user input. 
Weighting towards the minimum leads to a larger pool of 
exemplars and tighter clusters. Weighting towards the 
maximum leads to a smaller pool of exemplars and 
broader clusters). This threshold provides the system’s 
adaptation ability. Training images with significant 
variability provide coarser segmentation over training 
images with lower variability, for the same size of 
exemplar bank. 

Exemplars for the current image are selected iteratively. 
Initially, no chips are rejected. Of the non-rejected chips, 
the one with the minimum local difference is added to the 
bank of exemplars.  All chips with difference less than 
the clustering threshold from the exemplar are rejected.  
This process is iterated until all chips have either been 
added to the exemplar bank or rejected. The exemplars 
for the current image are then merged with the bank of 
exemplars from the previous images.  

E. Image Chip Difference Metric  

Image difference metrics remain an open issue in the 
evaluation of image compression schemes.  While it is 
easy to measure the amount of compression and the 
encoding/decoding time, it is not clear how to measure 
the quality of the reconstructed image, i.e., its difference 
in appearance from the original. Different image 
characteristics are important depending on the image 
content, the questions at hand, and who is looking at the 
image.   

      
Fig 3: Reconstruction of training image from 
exemplars and resulting classification. 

Similarly, there is no obviously correct metric for 
measuring the difference between two images.  Before 
the images are chopped into chips, they can be 
processed to balance the relevant image characteristics 
(see II.C Image Space Transformation).  In principle, 
therefore, simple measures of the aggregate difference 
are all that are needed. Even so, there are many 
different ways to calculate the difference between two 
image chips.  Some metrics are computed from the 
pixel-by-pixel difference between two chips, others are 
calculated from the difference in statistics computed 
from the individual chips, e.g., 

• the sum over all pixel locations and all image planes 
of the absolute value of the difference between the 
two images;  

• the root sum square over all pixel locations and all 
image planes of the difference between the two 
images;   

• the maximum over all image planes of the sum over 
all pixel locations of the absolute value of the 
difference between the two images;   

• the sum over all pixel locations of the maximum over 
all image planes of the absolute value of the 
difference between the two images;  

• the root sum square over all image planes of the 
difference in the mean values and difference in 
standard deviations (over pixel locations) of the two 
images; and   

• the sum over all image planes of the absolute 
difference in the mean values and difference in 
standard deviations (over pixel locations) of the two 
images.  

The first four metrics are computed from pixel-by-pixel 
differences of the image chips, while the last two metrics 
are computed from statistics of the image chips. 
Although, the software is set up to incorporate different 
metrics, the results in this paper are based on the first 
and last metrics.  

F. Exemplar Membership in Terrain Classes  

Each image chip maps to a region in the terrain 
classification overlay. The terrain classification of the 
image chip is simply the expected membership in each 
of the terrain classes. It is possible that a chip could 
straddle more than one terrain class, or could straddle 
an unclassified portion of the overlay. After the new 
exemplars are added to the exemplar bank, the current 
image is segmented using all of the exemplars in the 
bank. Each chip location in the image is assigned to the 
exemplar to which it is closest, provided the distance is 
less than the current clustering threshold. In some 
cases, some image chips may not be associated with 
any exemplar. For each exemplar in the bank, we 
accumulate the number of times the exemplar is “hit” by 
an image. The terrain class membership of the exemplar 
is the mean over all chips associated with the exemplar, 
of terrain class memberships of the chips. The terrain 
segmentation is converted to terrain classification by 
assigning each location the terrain class membership 
values of the exemplar associated with that image 
location.  

G. Output Illustration Controls  

The algorithm contains options to output different images 
to illustrate and provide insight into the processing:  



 

 

• the pseudo plan view or camera band view 
perspective transformation of the image;  

• the pseudo plan view or camera band view 
perspective transformation of the terrain class 
overlay;  

• the exemplar chips (at their location in the image) 
selected from the current image;  

• the segmentation of the current image based on the 
current bank of exemplars; and  

• the classification of the image based on the current 
bank of exemplars.  

There is no obvious and correct way to represent the 
different segments for purposes of visualization. Color-
coding shows the different segments, but does not give 
much insight into the basis for the segmentation. The 
software illustrates the segmentation in a way that 
provides direct visual insight into the basis for the 
segmentation.  To visualize the segmentation, the 
software replaces each image chip with the exemplar 
chip that it is associated with (image chips not 
associated with any exemplar appear black) (See Fig. 
3). When the sampling distance is less than the 
exemplar scale, the exemplars are blended in the 
reconstruction. The visualization image is the same size 
as the pseudo plan view or camera band view 
perspective image, so it is easy to directly compare the 
two. By using the exemplar chips themselves, the 
visualization image shows what the exemplars look like, 
and which image chips they are associated with. Finally, 
comparing the visualization to the perspective image 
gives prima fascia evidence of the credibility of the 
segmentation.  

   

   
Fig. 4: Test images, reconstruction from 
exemplars, and resulting classification. (One RGB 
training image) 

H. Application for Segmentation and Classification 

The application routine reads in the filter bank and 
associated data produced by the training routine. It 
segments and classifies the test images one at a time. 
No changes are made to the exemplar bank or 
associated data. After pseudo plan view or camera band 
view perspective processing, the test image is chopped 

into chips at the specified scale and sampling distance.  
Each image chip is assigned to the closest matching 
exemplar, providing the match is within the current 
clustering threshold, otherwise the chip is unassigned. 
This produces the segmentation by exemplars. After the 
segmentation, each location is assigned the terrain class 
fuzzy membership of the segmenting exemplar. The 
classification image is at the resolution of the center-to-
center sampling distance. 

   

   
Fig. 5: Test images, reconstruction from 
exemplars, and resulting classification. (Two RGB 
training images) 

III. DEMONSTRATION RESULTS 

This section illustrates the segmentation and 
classification system. The demonstration uses color-
coding to show the terrain classification into Go (green), 
NoGo (red), and Unclassified (blue) regions.  Fig. 4 
shows classification results derived from the single 
training image in Fig. 1, where gravel is designated “Go” 
and everything else is “NoGo.” This training resulted in 
25 exemplars. Note the errors due to the building in the 
upper image and in the lower image due to the 
shadowed gravel. Adding a second training image 
similar to the lower image in Fig. 4, results in the 
classification results of Fig. 5, with 78 exemplars. Note 
the overall improvement in the shadowed region and in 
the grassy areas. However, the upper image 
classification has become noisier. 

To compensate for different lighting conditions, we 
turned to the HSV (hue, saturation, value) color space.  
Although this resulted in some improvements, at the 
expense of more exemplars, the HSV system is 
unsatisfactory due to the cyclical nature of hue and the 
fact that HSV is far from perceptually uniform. This led to 
the implementation of an L*a*b* color space transform, 
where L* refers to luminance and the a* and b* 
components encode the color information. The 
transformation to L*a*b* is nonlinear, resulting in 
components that are nearer to perceptually uniform.   

Figure 6 shows the results of training the algorithm with 
images transformed to the L*a*b* color space.  The 



 

 

upper image is similar to the RGB classification, while 
the lower image is much improved.  However, the 
number of exemplars has increased by a factor of two to 
172.  Note that the images in Fig. 6 are from the original 
RGB color space, not the L*a*b* color space, as the 
latter is more difficult to interpret. 

   

   
Fig. 6: Test images, reconstruction from 
exemplars, and resulting classification. (Two 
L*a*b* training images) 

Color alone is not always a good indication of image 
matching, and therefore we have also included texture 
as an additional dimension on which to differentiate and 
compare image exemplars. Figure 7 shows the results of 
adding a texture plane, computed by calculating the 
standard deviation over a sliding window throughout the 
image.  The classification is smoother, but not 
significantly better than without texture on these two 
images and the number of exemplars has increased to 
278.   

   

   
Fig. 7: Test images, reconstruction from 
exemplars, and resulting classification. (Two 
L*a*b* training images with texture) 

All the preceding analysis was performed using a 
difference metric based on computing the pixel-by-pixel 
difference between the image chips.  There is also the 
option of computing statistics on each image chip and 
then computing the difference between the statistics. 
Figure 8 shows the results of that analysis, which 
required only 75 exemplars, similar to the previous RGB 
classification with no texture, but with much better 
classification accuracy. In this example, the computed 
distance metric was the sum of the absolute differences 

of the mean and standard deviation over each image 
plane. 

   

   
Fig. 8: Test images, reconstruction from 
exemplars, and resulting classification. (Two 
L*a*b* training images with texture and using 
statistical differences) 

The low number of features allows the possibility of 
using other learning algorithms such as neural networks, 
support vector machines, or the various clustering 
methods.  Memory requirements are also reduced since 
only the statistics of the exemplar are stored, not the 
entire chip. 

IV. COMPARISON TO OTHER TECHNIQUES 

A Fuzzy Clustering 

To compare our online classification methodology to 
other techniques, we turned to a more realistic and 
difficult problem using the same set of images. Instead 
of segmenting out gravel versus everything else, we 
segmented out gravel and grass versus everything else.  
The data consisted of two image sequences.  Figure 9 
shows the two training images, which are the same as 
for the preceding analysis, and their associated 
segmentation masks. We chose 23 other images from 
the two image sequences to test the algorithms, which 
required hand drawing classification maps for each of 
the test images. 

   

   

Fig. 9: Input training images and classification for 
extended comparison. 



 

 

Since the online algorithm produces exemplars that are 
essentially cluster centers, it is natural to compare the 
performance against a standard clustering algorithm, 
such as fuzzy c-means clustering (FCM) [11]. Since the 
difference metric uses the absolute difference between 
feature vectors, while the FCM algorithm computes a 
root-mean-square difference, we took the square root of 
the feature vectors before passing them to the FCM 
algorithm. We also replaced the cluster centers, 
computed by the FCM algorithm, with the closest feature 
vector in order to replicate the use of exemplars and to 
compute the reconstruction images.  The online 
algorithm analyzes each class separately, and then tests 
each test feature vector against exemplars from each 
class. We replicated this behavior in the FCM algorithm 
by segmenting the two classes and computing clusters 
for each separately.  One difference that we have not 
replicated is that the online algorithm currently uses an 
unclassified category when an image chip is too far from 
any exemplar based on an adaptive threshold. This is 
seen in the blue chips in the classification image and the 
corresponding black chips in the reconstruction images.  
The FCM algorithm simply chooses the closest 
exemplar. 

   

   

Fig. 10: Examples of test images and hand-drawn 
classification maps. 

We also implemented a metric to compare the output 
classification mask to a user-drawn mask.  Fully “Go” 
regions are mapped to +1, fully “NoGo” regions are 
mapped to -1, and unknown regions are mapped to 0. 
The chosen difference metric is the absolute difference 
divided by the sum of absolute values.  While this metric 
handles the fuzzy classification in the previous section, 
in order to compare with other methods, we defuzzified 
the classification map and also mapped the unknown 
regions to “NoGo,” which would normally be done for 
cautious driving. We modified the code from Ref. [12] for 
our implementation of the FCM algorithm. 

B Validation 

One issue with typical clustering algorithms is the 
requirement to choose the number of clusters 
beforehand.  There are a number of published validation 

measures that can be used to find an optimum number. 
Two common measures are the Partition Coefficient, 
which measures the amount of overlapping between 
clusters, and the Partition Entropy, which measures the 
fuzziness of the partitioning [11,12]. However, these tend 
to scale monotonically with the number of clusters and 
one must find the ‘knee in the curve’ to estimate the 
optimal number of clusters.  This can be problematic 
when the data is noisy. Two other measures are the 
Partition Index, which measures separation and 
compactness of the clusters, and the Separation Index, 
which uses a minimum distance rather than an average 
distance [12].  While the latter measures provide a 
clearer optimality point, we found that they did not 
always correlate well with the measured training and test 
error in our data (See Fig. 11).  However, they may 
provide more accurate predictions with a larger training 
set.  

 

Fig 11: Test error (black), Partition Index (red), 
Separation Index (blue), and Unused Exemplars 
(green), as a function of number of training 
clusters.  

The aforementioned measures determine desirable 
attributes of a clustering structure and measure how well 
the current clustering scheme adheres to them.  Instead, 
we have discovered a method that is specific to the 
exemplar replacement version of FCM clustering that we 
have implemented and is based on a more utilitarian 
measure of cluster effectiveness.  We noticed that when 
we replaced cluster centers with exemplars, there was 
duplication in the identification of the exemplars.  This 
resulted in the situation where we would specify a given 
number of clusters for training, but when the cluster 
centers were replaced with exemplars, all the exemplars 
would not be used in classifying the training set.  That is, 
there were unused exemplars.  As we specified more 
clusters, the number of unused exemplars would 
increase.  We conjecture that it is at the point where one 
starts seeing unused exemplars that we are near the 
optimal number of clusters.  This is exemplified in Fig. 11 
where the number of unused exemplars starts to 
increase when the total number of exemplars reaches 



 

 

about 40.  Note that this is also near the region where 
the test area is smallest. This measure gives a 
reasonably well defined location to stop adding clusters 
to the training and should allow a simple method for 
searching for optimal number of clusters. 

C Comparison Results 

For our comparison, we chose to set the number of 
training clusters at 40. Figures 12 and 13 show the 
clustering results for the two test images of Figure 10.  
Note that while the clustering algorithm tends to produce 
more accurate classification maps, the differences are 
not overly large. This is borne out by the group 
classification accuracy for the two methods, where the 
combined classification error over the 23 test images is 
0.163 with 92 exemplars for the online method, while the 
FCM algorithm had an error of 0.115 with 39 exemplars. 

   

   

Fig. 12: Test image reconstruction from exemplars 
and resulting classification for the online (upper) 
and clustering (lower) methods. (Two L*a*b* 
training images with texture) 

   

   

Fig. 13: Test image reconstruction from exemplars 
and resulting classification for the on-line (upper) 
and clustering (lower) methods. (Two L*a*b* 
training images with texture) 

It appears that the best choice for a complete system 
would be a combination of the two algorithms employed.  
The clustering algorithm could be used for the initial 
offline training.  The online learning algorithm would then 
be employed while the system is running. 

V. FINDINGS AND OBSERVATIONS 

This paper has demonstrated an approach to image-
based terrain segmentation and classification using 
exemplars. Exemplars provide a simple way to represent 
the characteristic color/luminance and spatial patterns of 
terrain. Since the exemplars are drawn from training 
images in such a way as to span the appearance of the 
training images, they are well suited to represent the 
variations of appearance without an a priori model of 
terrain appearance. The software system, as presented, 
allows for considerable flexibility to specify the 
perspective transformation, image space transformation, 
scale, resolution, sampling density, and image difference 
metric. Empirical research is needed to tune these 
options for specific applications.  

Preliminary results indicate the approach has potential to 
segment terrain in a manner that is consistent with 
subjective perception. The segmentation appears to be 
robust over changes in lighting, specific terrain, and 
automatic camera gain and contrast adjustments.  Our 
previous results indicated that analysis in the camera 
band view was more useful for segmenting and 
classifying positive obstacles than the pseudo plan view. 
When presented with novel images, the camera band 
view was more likely to produce mixed Go/NoGo terrain 
classification, whereas the pseudo plan view was more 
likely to produce unclassified terrain segments. This may 
be due to the fact that the camera band view mixes 
different scales, whereas the pseudo plan view 
maintains more consistent scale. 

The algorithm performs quite well on the simplistic 
segmentation of gravel from other terrain. When 
presented with a combination of both grass and gravel, 
the system still performed reasonably well. Nonetheless, 
the preliminary analysis is not adequate to assess the 
value of this method of terrain classification for any 
specific application, e.g., robot navigation. More 
extensive testing, with a structured experimental 
objectives and design are needed to evaluate the 
applicability of this method of terrain classification for 
any specific application. The algorithm is reasonably 
fast, with the largest time consumption actually being the 
reconstruction of the segmentation images by inserting 
exemplars. But this step is for visualization purposes 
only. The method presented here does not address an 
optimum method for defuzzification, i.e., how to make 
discrete decisions based on the fuzzy membership, and 
does not address how to make discrete decisions when 
terrain class has partial membership in the “unclassified” 
set. The research presented here does not address how 
to combine results obtained by analysis at different 
levels of resolution and/or scale. Further research in 
these topics is needed, in the context of specific 
applications.  



 

 

The online algorithm results compared favorably to the 
results obtained from offline fuzzy c-means clustering. 
Although the latter performed measurably better, it had 
the advantage of seeing all the data at once, in contrast 
to the online algorithm, which is also image order 
dependent, and is therefore suboptimal.  However, the 
online algorithm does use information about neighboring 
image chips in making decisions.  This information could 
also potentially be used in the clustering algorithms. In 
addition, we have proposed a method for determining an 
optimal number of clusters when using exemplar-based 
clustering.  

Additional future work involves training and testing on a 
larger set of images, as well as applying the algorithm to 
video streams and implementing on a mobile robot. 
Since terrain appearance varies as a function of 
distance, fusing range data from a stereo camera 
system with the color and texture information, currently 
being used, is anticipated to provide enhanced 
performance.  Range information should also allow us to 
disregard portions of the image that do not pertain to the 
terrain and that can generate a large number of 
exemplars due to their wide variety of appearance, such 
as objects in the sky. We will also continue to explore 
alternative information such as multi-resolution 
processing and structure filtering. 
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